和与积的奇偶性教案6篇

时间:
Brave
分享
下载本文

教案也是教师对教学的规划和安排,一份出色的教案是充分能体现老师的教学水平的,以下是会述职范文小编精心为您推荐的和与积的奇偶性教案6篇,供大家参考。

和与积的奇偶性教案6篇

和与积的奇偶性教案篇1

教学目标:了解奇偶性的含义,会判断函数的奇偶性。能证明一些简单函数的奇偶性。弄清函数图象对称性与函数奇偶性的关系。

重点:判断函数的奇偶性

难点:函数图象对称性与函数奇偶性的关系。

一、复习引入

1、函数的单调性、最值

2、函数的奇偶性

(1)奇函数

(2)偶函数

(3)与图象对称性的关系

(4)说明(定义域的要求)

二、例题分析

例1、判断下列函数是否为偶函数或奇函数

(1) (2)

(3) (4)

例2、证明函数 在r上是奇函数。

例3、试判断下列函数的奇偶性

三、随堂练习

1、函数 ( )

是奇函数但不是偶函数 是偶函数但不是奇函数

既是奇函数又是偶函数 既不是奇函数又不是偶函数

2、下列4个判断中,正确的是_______.

(1) 既是奇函数又是偶函数;

(2) 是奇函数;

(3) 是偶函数;

(4) 是非奇非偶函数

3、函数 的图象是否关于某直线对称?它是否为偶函数?

和与积的奇偶性教案篇2

数的奇偶性(第八课时)

教学内容:数的奇偶性

教学目标:尝试运用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规律在活动中体验研究的方法,提高推理能力。

教学重点:在活动中发现奇偶性变化的规律

教学过程:

一、导入

1、什么是奇数?什么是偶数?

2、判断下面的数是奇数还是偶数,并说说你是怎样判断的。

45 48 234 564 98 109

二、新知

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动

2、奇偶数相加的规律

让学生观观察下面两组数,各有什么特点?

(1)80 12 20 6 18 34 16 52 (2)11 21 37 87 101 25 3 49

试一试

偶数加偶数 奇数加奇数 偶数加奇数

判断:让学生交流判断的思路

三、总结

例子: 结论:

12 + 34 = 48 偶数+偶数=偶数

11 + 37 =48 奇数+奇数=偶数

12 + 11 =23 奇数+偶数=奇数

四、作业布置

和与积的奇偶性教案篇3

学习目标 1.函数奇偶性的概念

2.由函数图象研究函数的奇偶性

3.函数奇偶性的判断

重点:能运用函数奇偶性的定义判断函数的奇偶性

难点:理解函数的奇偶性

知识梳理:

1.轴对称图形:

2中心对称图形:

?概念探究】

1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。

2、 求出 , 时的函数值,写出 , 。

结论: 。

3、 奇函数:___________________________________________________

4、 偶函数:______________________________________________________

?概念深化】

(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。

(2)、奇函数偶函数的定义域关于原点对称。

5、奇函数与偶函数图像的对称性:

如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。

6. 根据函数的奇偶性,函数可以分为____________________________________.

题型一:判定函数的奇偶性。

例1、判断下列函数的奇偶性:

(1) (2) (3)

(4) (5)

练习:教材第49页,练习a第1题

总结:根据例题,你能给出用定义判断函数奇偶性的步骤?

题型二:利用奇偶性求函数解析式

例2:若f(x)是定义在r上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。

练习:若f(x)是定义在r上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。

已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式

题型三:利用奇偶性作函数图像

例3 研究函数 的性质并作出它的图像

练习:教材第49练习a第3,4,5题,练习b第1,2题

当堂检测

1 已知 是定义在r上的奇函数,则( d )

a. b. c. d.

2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( b )

a. 增函数且最小值为-7 b. 增函数且最大值为7

c. 减函数且最小值为-7 d. 减函数且最大值为7

3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(c )

a. b. c. d.

4 已知函数 为奇函数,若 ,则 -1

5 若 是偶函数,则 的单调增区间是

6 下列函数中不是偶函数的是(d )

a b c d

7 设f(x)是r上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( a )

a b f(- )f(-2) f(3) c f(- )

8 奇函数 的图像必经过点( c )

a (a,f(-a)) b (-a,f(a)) c (-a,-f(a)) d (a,f( ))

9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( a )

a 0 b 1 c 2 d 4

10 设f(x)是定义在r上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__

11若f(x)在 上是奇函数,且f(3)_f(-1)

12.解答题

用定义判断函数 的奇偶性。

13定义证明函数的奇偶性

已知函数 在区间d上是奇函数,函数 在区间d上是偶函数,求证: 是奇函数

14利用函数的奇偶性求函数的解析式:

已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。

和与积的奇偶性教案篇4

一、三维目标:

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

二、学习重、难点:

重点:函数的奇偶性的概念。

难点:函数奇偶性的判断。

三、学法指导:

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

四、知识链接:

1.复习在初中学习的轴对称图形和中心对称图形的定义:

2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。

五、学习过程:

函数的奇偶性:

(1)对于函数 ,其定义域关于原点对称:

如果______________________________________,那么函数 为奇函数;

如果______________________________________,那么函数 为偶函数。

(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

六、达标训练:

a1、判断下列函数的奇偶性。

(1)f(x)=x4; (2)f(x)=x5;

(3)f(x)=x+ (4)f(x)=

a2、二次函数 ( )是偶函数,则b=___________ .

b3、已知 ,其中 为常数,若 ,则

_______ .

b4、若函数 是定义在r上的奇函数,则函数 的图象关于 ( )

(a) 轴对称 (b) 轴对称 (c)原点对称 (d)以上均不对

b5、如果定义在区间 上的函数 为奇函数,则 =_____ .

c6、若函数 是定义在r上的奇函数,且当 时, ,那么当

时, =_______ .

d7、设 是 上的奇函数, ,当 时, ,则 等于 ( )

(a)0.5 (b) (c)1.5 (d)

d8、定义在 上的奇函数 ,则常数 ____ , _____ .

七、学习小结:

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

补充练习题:

1.下列各图中,不能是函数f(x)图象的是( )

解析:选c.结合函数的定义知,对a、b、d,定义域中每一个x都有唯一函数值与之对应;而对c,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选c.

2.若f(1x)=11+x,则f(x)等于( )

a.11+x(x≠-1) b.1+xx(x≠0)

c.x1+x(x≠0且x≠-1) d.1+x(x≠-1)

解析:选c.f(1x)=11+x=1x1+1x(x≠0),

∴f(t)=t1+t(t≠0且t≠-1),

∴f(x)=x1+x(x≠0且x≠-1).

3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=( )

a.3x+2 b.3x-2

c.2x+3 d.2x-3

解析:选b.设f(x)=kx+b(k≠0),

∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.

和与积的奇偶性教案篇5

教学内容

课本第12~17页上的内容。

教学目标

1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数= 奇数。

2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。

3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。

4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。

教学重点

从生活中的摆渡问题,发现数的奇偶性规律。

教学难点

运用数的奇偶性规律解决生活中的实际问题。

教具准备

投影、杯子。

教学过程

一、揭示课题

自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。

二、组织活动,探索新知

活动一:示图(右图)

小船最在南岸,从南岸驶向北岸,

再从北岸驶回南岸,不断往返。

1、⑴小船摆渡11次后,船在南岸还是北岸?为什么?

⑵有人说摆渡100次后,小船在北岸。

他的说法对吗?为什么?

2、请任说一个摆渡的次数,学生回答在南岸还是北岸?

3、请学生画示意图和列表并观察。

4、想:摆渡的次数与船所在的位置有什么关系?

摆渡奇数次后,船在 岸。

摆渡偶数次后,船在 岸。

试一试

一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝 ,反动19次后杯口朝 。

1、想一想:翻动的次数与杯口的朝向有什么关系?

翻动奇数次后,杯口朝 。

翻动偶数次后,杯口朝 。

2、把“杯子”换成“硬币”你能提出类似的问题吗?

活动二:

圆中的数有什么特点?正方形中的数有什么特点?

圆中的数都是偶数,正方形中的数都是奇数

试一试:(投影)

三、巩固练习(投影出示习题)

四、总结:

这节课同学们有什么收获和体会?

五、作业

1、课本第17页“试一试”的题目。

2、优化作业

和与积的奇偶性教案篇6

一、教学目标

?知识与技能】

理解函数的奇偶性及其几何意义.

?过程与方法】

利用指数函数的图像和性质,及单调性来解决问题.

?情感态度与价值观】

体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.

二、教学重难点

?重点】

函数的奇偶性及其几何意义

?难点】

判断函数的奇偶性的方法与格式.

三、教学过程

(一)导入新课

取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;

问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;

(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.

(二)新课教学

1.函数的奇偶性定义

像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.

(1)偶函数(even function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(学生活动):仿照偶函数的定义给出奇函数的定义

(2)奇函数(odd function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

注意:

1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

2.具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;

奇函数的图象关于原点对称.

3.典型例题

(1)判断函数的奇偶性

例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)

解:(略)

总结:利用定义判断函数奇偶性的格式步骤:

1 首先确定函数的定义域,并判断其定义域是否关于原点对称;

2 确定f(-x)与f(x)的关系;

3 作出相应结论:

若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;

若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

(三)巩固提高

1.教材p46习题1.3 b组每1题

解:(略)

说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.

2.利用函数的奇偶性补全函数的图象

(教材p41思考题)

规律:

偶函数的图象关于y轴对称;

奇函数的图象关于原点对称.

说明:这也可以作为判断函数奇偶性的依据.

(四)小结作业

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

课本p46 习题1.3(a组) 第9、10题, b组第2题.

四、板书设计

函数的奇偶性

一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

三、规律:

偶函数的图象关于y轴对称;

奇函数的图象关于原点对称.

和与积的奇偶性教案6篇相关文章:

季度性工作计划优质5篇

季度性工作计划精选5篇

季度性工作计划最新7篇

季度性工作计划5篇

项目性工作计划模板8篇

项目性工作计划通用5篇

项目性工作计划最新5篇

汇报性工作总结优质7篇

汇报性工作总结参考5篇

汇报性工作总结模板8篇

和与积的奇偶性教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
48146